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J. Phys. A: Math. Gen., Vol. 1 1 ,  No. 6, 1978. Printed in Great Britain 

Graphical method for computing the determinant and inverse 
of a matrix. Generating functions for harmonic oscillator 
integrals 

J-J Labarthe 
Laboratoire Aim6 Cotton, CNRS 11, Blt. 505, 91405, Orsay, France 

Received 5 August 1977, in final form 1 February 1978 

Abstract. A graph G with n vertices is associated with the n X n matrix x. Det x and x;' 
are expressed in terms of sums over sets of subgraphs of G. The method is used to 
compute generating functions for products of overlaps involving harmonic oscillator 
wavefunctions. 

1. Introduction 

The method of calculating determinants and inverses of matrices that we present in 9 2 
is a graphical transcription of well known formulae. The method turns out to be very 
convenient for matrices with many zero elements. We illustrate the method in 9 3 by 
computing generating functions for products of integrals over harmonic oscillator 
wavefunctions. We expose two ways of calculating these generating functions, one 
which is essentially the method of Birtwistle (1977) and the other which uses ideas 
from Bargmann (1962, reprinted in Biedenharn and Van Dam 1965, pp 300-16) and 
is better in the case when the harmonic oscillators have the same frequency. These 
generating functions are expressed in terms of determinants and inverses of matrices 
with many zeros, so that our method is useful. 

2. Graphical method for computing det x and x-' 

We consider an n X n complex matrix x = A -  P, where A is diagonal (Ai j  = 0 if i # j )  
and where P has zeros on the diagonal: Pii = 0 (1 d i S n) .  To P we associate a graph 
G consisting of n vertices, noted by V, (1 d i d n) ,  and where an arrow, noted by (i j), 
goes from V,. to Vi for each Pij#O. Two examples of graphs corresponding to 
calculations in 9 3 are drawn on figures 1 and 2. We define path [abc .  . . de]  as the 
ordered sequences of arrows (ab) ,  (bc),  . . . , (de)  and of the k (k 2 1) vertices 
V,, Vb . . . V,. Thus [ a ]  is a path with no arrow. Circuit (abc .  . . d e )  consists of the 
ordered cycles of the k ( k  2 2 )  arrows (ab) ,  ( b c ) .  . . (de) ,  (ea) ,  and of vertices 
V,, Vb . . . V,. Circuits (abc), (bca) and (cab) are identical. A set of m ( m  2 0) circuits 
C1 . . . C,, such that each vertex of C1 . . . C,,, appears only once in the set {C, . . . C,} 
is called a closed diagram. We denote the closed diagram composed of zero circuit by 
J. A set of one path T and m ( m  20) circuits CI . . . C,,, such that each vertex of T, 
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Figure 1. GI graph of matrix P, equation (19). Figure 2. GZ graph of matrix P, equation (15). 

C 1 . .  . C, appears only once in the set {T, C1. ,  . C,} is called an open diagram. We 
denote the set of the closed (open) diagrams of G by K (O), and by Oii the set of the 
open diagrams with a path of the form [ i  . . . j ] .  

For the graph of figure 2 (with n = 4), the nine closed diagrams of K are drawn on 
figure 3 and Oil, fIl2 and OH are represented in figure 4. 

J 

+ A , !  -‘12‘21 ‘ D A L L  ‘23 ‘32 A 11 ‘ L L  
,:l 

5 2  ‘21 p3LpL3 

PILPL1 ‘23‘32 -‘lL‘L3‘32‘21 -‘12 ‘23 p3Le1 

Figure 3. K :  the nine closed diagrams of Gz (n = 4) and values of M ( D ) .  

p7 2 P234 L P 1 L e 3 h 2 2  

(c I 

Figure 4. (a) 011, ( b )  Cl12 and (c) 0 1 3  for GZ (n = 4). 



Graphical method 1011 

For each diagram D we denote by d ( D )  (V(D))  the set of arrows (vertices) 

If D is a closed or open diagram with m circuits we define 
composing the path and/or circuits of D. 

In particular: M ( J )  = IIy=l Aii. Other examples of M ( D )  are given in figures 3 and 4. 
Now we have the following results: 

det(A-P)= 1 M ( D )  
D E K  

and 

Indeed, (1) is the graphical transcription of 

As an example, for the permutation of 1 . . . n, U = (123)(45)(6). . . (n), written as a 
product of cyclic permutations, we have 

Xi j ( x - ' ) . .  = - 
'' detx 

where Xii is the co-factor of xji in det x .  
If one has to calculate 

where U = (vl . . . U,) and w = ( w l  . . . wn) are two vectors of C", it is convenient to put 
M ' ( T )  = uiM(T)wj if T E nii. Then: 

Let us emphasise that the interest of equations (l)-(3) is greater when the matrix P 
is sparse. The diagrams are then easily enumerated and the method described makes 
the calculations much easier, especially when formal (rather than numerical) expres- 
sions are required. 
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3. Generating functions for products of harmonic oscillator overlaps 

3.1. Generating function for the harmonic oscillator wavefunctions 

We denote the normalised one-dimensional harmonic oscillator functions by 

with 

(see Messiah 1959). 
The coherent state (Glauber 1963) 

where Z = x +iy E C, 
equation (4). In the r representation, state (6)  is: 

= x - iy  serves as a generating function for the states of 

(rjz, w )  = 

Im, w,  d )  = eipd\m). 

expi - &wr2 + Z2)+ J(2w ) rZ] .  (7 ) 

(8) 

The functions of the harmonic oscillator centred at - d are given by 

3.2. Generating functions S ,  ( t )  for products of overlaps 

Birtwistle (1977) has given a general method for calculating generating functions of 
the type: 

(n 2), t = (tl . . . t,)E C" (when t is sufficiently small, all integrals in the following 
converge) and where, as in the following, we identify labels 1 and n + l .  
These generating functions provide a means for evaluating chain integrals like 
(a  lb)(blc)(cla), and sums of such integrals (Mnatsakanyan 1971). 

Introducing the operator: 

we have: 

(11) 

dp l (Z)=  T-' e-=' dx dy is integrated over R 2 ,  following the notation from Barg- 
mann (1962). Equation (9) then reads: 

S,(t)=Tr QI Q 2 . .  . Q, 
Qk = eipdkQ(tk, W k )  e-ipdk 

(12) 
(1 G k G n ) .  
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3.2.1. Calculation of Sn(r): method A. We sketch here the method of Birtwistle for 
computing S,( t ) .  The trace in equation (12) is computed in the r representation: 

S , ( t ) =  I (rnlQ1lrd(rilQz.lrd . . . (rn-llQnlrn) d"r (13) 

r = (rl . . . r , )  is integrated over R" and 

(rk - 1 I Qk Irk ) = (rk - 1 -k d k  1 Q (fk, Wk )Irk -k d k  ). 

The matrix element ( x l Q ( t ,  w ) ) y )  can be easily computed from equations (11) and 
(7), by carrying out integrations similar to the ones studied in the remainder of this 
section: 

(x lQ(t ,  w ) I y ) =  ( ~ / . r r ) ~ / ~ ( l - t ~ ) - ~ ' ~ e x p { w [ 2 x y t - ( l + t ~ ) ( x ~ + y ~ ) / 2 ] / ( 1 - t ~ ) } .  (14) 

Using equation (10) and the expression of the harmonic oscillator function in terms of 
Hermite polynomials equation (14) is seen to be nothing else than the Mehler formula 
(Bateman and Erdklyi 1955, equation (14)). Equation (13) is of the form: 

Sn(t)  = J A exp[ - r .  (A -P)r  + b .  r + c]  d"r/.rr"" (15) 

n 
2 1 /2  A = n [ ~ i / ( l  - t  j)] . 

i = l  

A is the n x n diagonal matrix: 

P is the symmetric n X n matrix, with all elements equal to zero but: 

Wk + 1 tk  + 1 

1-tk+l 
P k , k + l  = p k + l . k  = 2 ( l s k s n ) ,  if n > 2  

if n = 2  

b is the n vector: 

and where the cyclic condition n + 1 = 1 is used. 
The integral in equation (15) is calculated in equation (10) of Birtwistle (1977): 

S,(t)=A[det (A-P)]-'I2 exp[$b. (A-P)-'b+c]. (16) 

The expressions in equation (16) can be easily computed by the method of § 2 with the 
graph of figure 2 and diagrams like those in figures 3 and 4. But instead of giving 
explicit results for equation (16), we turn to another method for computing S , ( t )  
(equation (12)). 
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3.2.2. Calculation of S,( t ) :  method B. Using equation (11) we get for the trace in 
equation (12): 

Sn(f)= I dpn(5) fi ( z k  tk, Wkleip(dk+l-dk)lZk+l, wk+l) (17) 
k = l  

where 5 =  (Zl,. . . ,Z,,)E C", dpn(5)= II;=, dpl(Zk)  and n + 1 = 1. The matrix ele- 
ments in equation (17) are: 

(2, wleipdlZ', w ' )  

= (cos e)1'2 exp[sin ~ ( z ~ - Z ' * ) / ~ + C O S  ezZ' 

+COS e ( & d Z ' - v G d Z ) / f i - c o s  e&Zd2/4] (1 8) 
where sin 8 = (w - w ' ) / ( w  +U'), cos 8 = 2 m / ( w  + w ' ) .  

The integral in equation (17) is thus seen to be similar to that in equation (15), but 
now the integration is over R2", so that in general the computation of S,(t) is simpler 
from equation (15). However when the oscillators have the same frequency wk = w 
(1 s k s n) in equation (18) we have sin 6 = 0, so that equation (17) is of the form: 

S, , ( t )=  J d p n ( 5 ) e x p ( ~ . P t ; + t , . ~ + ~ .  w + c )  (19) 

where P is the n x n complex matrix with all elements zero except P k + l , k  = tk 
(1 s k sn); 

The integral in equation (19) can be computed by the method of the appendix of 
Bargmann (1962, reprinted in Biedenharn and Van Dam 1965, pp 315-6): 

S,(t)=[det(l-P)]-'exp[o. (l-P)-'w + c ]  (20) 
Here again, the expressions in equation (20) can be computed by the method of 

§ 2, from equations (1) and (3). The graph of P is drawn in figure 1. There are only 
two closed diagrams, so that from equation (1): 

det(1-P)= l - t l f 2 . .  . t,,. 
Each of the sets nii contains only one open diagram, so that: 

v.(l-P)- 'w =[det(l-P)]-' 1 --(dj+l-di)(di-di-l) n t k  
" w  

i , j = i  2 k = i  

with the conventions that II' ,=i  fk  = (Hi=, tk)(rI',=l fk) if i > j and do = d,, d,+l= dl. 

4. Conclusion 

Other fields of application of the graphical method can be found. For example, the 
generating function for coupling-recoupling coefficients of SU(2), such as the 3nj  and 
njm coefficients, has been expressed by an equation like equation (20) (Labarthe 
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1975), where P is a 2n X 2 n  matrix of the form 

A,  B and C being n x n matrices such that: B = -B,  = - C, the tilde denoting the 
transposed matrix. 

In this case, introducing the graph of the coupling-recoupling coefficient (El Baz 
1969), which has branches instead of arrows, so that paths go over the branches in two 
directions, it was shown that: 

2 
det(1-P)=(  DeK M ( D ) )  

where K is the set of the closed diagrams. For the exponent also there is a formula 
like equation (3). 
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